Semi-described and semi-supervised learning with Gaussian processes

نویسندگان

  • Andreas C. Damianou
  • Neil D. Lawrence
چکیده

Propagating input uncertainty through non-linear Gaussian process (GP) mappings is intractable. This hinders the task of training GPs using uncertain and partially observed inputs. In this paper we refer to this task as “semi-described learning”. We then introduce a GP framework that solves both, the semi-described and the semi-supervised learning problems (where missing values occur in the outputs). Auto-regressive state space simulation is also recognised as a special case of semi-described learning. To achieve our goal we develop variational methods for handling semi-described inputs in GPs, and couple them with algorithms that allow for imputing the missing values while treating the uncertainty in a principled, Bayesian manner. Extensive experiments on simulated and real-world data study the problems of iterative forecasting and regression/classification with missing values. The results suggest that the principled propagation of uncertainty stemming from our framework can significantly improve performance in these tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions of Gaussian Processes for Ranking: Semi-supervised and Active Learning

Unlabelled examples in supervised learning tasks can be optimally exploited using semi-supervised methods and active learning. We focus on ranking learning from pairwise instance preference to discuss these important extensions, semi-supervised learning and active learning, in the probabilistic framework of Gaussian processes. Numerical experiments demonstrate the capacities of these techniques.

متن کامل

Semi-supervised learning : from Gaussian fields to Gaussian processes

We show that the Gaussian random fields and harmonic energy minimizing function framework for semi-supervised learning can be viewed in terms of Gaussian processes, with covariance matrices derived from the graph Laplacian. We derive hyperparameter learning with evidence maximization, and give an empirical study of various ways to parameterize the graph weights.

متن کامل

Semi-supervised Learning via Gaussian Processes

We present a probabilistic approach to learning a Gaussian Process classifier in the presence of unlabeled data. Our approach involves a “null category noise model” (NCNM) inspired by ordered categorical noise models. The noise model reflects an assumption that the data density is lower between the class-conditional densities. We illustrate our approach on a toy problem and present comparative ...

متن کامل

Semi-supervised deep kernel learning

Deep learning techniques have led to massive improvements in recent years, but large amounts of labeled data are typically required to learn these complex models. We present a semi-supervised approach for training deep models that combines the feature learning capabilities of neural networks with the probabilistic modeling of Gaussian processes and demonstrate that unlabeled data can significan...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015